Stress Transfer Theory I

Welcome! You are encouraged to register with the site and login (for free). When you register, you support the site and your question history is saved.

     The release of accumulated stress at a particular point during an earthquake alters the shear and normal stresses along the tectonic plate boundary and surrounding fault lines. According to geophysical theory, the Coulomb Failure Stress Change, which is the estimated alteration and resultant transfer of shear and normal stresses along a plate margin, is a function of change in shear stress along a fault and secondarily the change in normal stress along a fault and the change in pore pressure in the fault zone, the latter two factors scaling according to the friction coefficient characteristic to the plate margin.
     By measuring and calculating the stress transfer following seismic activity, it is possible to subsequently construct basic contour maps of regions where there have been positive stress changes and are therefore of higher risk of being potential epicenters of future large earthquakes. Calculations have revealed that when an earthquake occurs, approximately 80% of the energy is released as seismic waves, whereas the remaining 20% is stored and transferred to different locations along the fault, making those specific regions more susceptible to future earthquakes.
     Predicting earthquakes by using the theory of stress transfer has important potential applications. The main rival technique for forecasting, the statistical analysis of patterns in seismic activity, suffers from a contradiction. Foreshocks are deemed evidence of the potential for a future high-magnitude earthquake, but the lack of foreshocks along faults known to be active has been considered an equally plausible potential precursor for large events.
     The stress transfer theory has been used to predict the location of a magnitude 7.4 earthquake that occurred two years later in the port city of Izmit, Turkey, killing more than 30,000 people. A limitation of the theory as currently applied, due to insufficient understanding of plate kinematics, is that refining predictions with temporal constraints appears to be far more problematic; the team that gave the Izmit prediction had forecast an event near the city within thirty years.

The author is primarily concerned with

Review: Stress Transfer Theory I


Explanation

We can answer this question without completely grasping the science of the passage: we know that the author is describing a technique for predicting earthquakes, one which he considers important, although not perfect. Nothing indicates this technique is "older" (if anything, it sounds newer), so choice (A) is out. Choice (B) is quite general, but possibly correct. Choice (C) is inaccurate, because the passage spends little time on the differences between the stress transfer technique and its rival, so (C) is out. Choice (D) is not accurate, because the passage does not describe a specific prediction, or specific events, but rather a technique and the science behind it. Choice (E) describes a negative view, while the author presents a slightly positive view.

The correct answer is (B).


If you believe you have found an error in this question or explanation, please contact us and include the question title or URL in your message.